
ar
X

iv
:1

71
0.

00
87

9v
2 

 [
m

at
h.

A
T

] 
 6

 J
ul

 2
01

8

EQUIVARIANT COMPLEX BUNDLES, FIXED POINTS AND

EQUIVARIANT UNITARY BORDISM

ANDRÉS ÁNGEL, JOSÉ MANUEL GÓMEZ, AND BERNARDO URIBE

Abstract. We study the fixed points of the universal G-equivariant complex
vector bundle of rank n and obtain a decomposition formula in terms of twisted
equivariant universal complex vector bundles of smaller rank. We use this
decomposition to describe the fixed points of the complex equivariant K-theory
spectrum and the equivariant unitary bordism groups for adjacent families of
subgroups.

Introduction

In this article decomposition formulas for equivariant K-theory and geometric
equivariant bordism of stably almost complex manifolds are obtained under suitable
hypotheses. The underlying main technical idea behind such decompositions is a
splitting formula for equivariant complex vector bundles first obtained in [7] for the
particular case of finite groups. In this article we generalize this splitting formula
for the general case of compact Lie groups and apply it to obtain the decompositions
of equivariant K-theory and equivariant unitary bordism mentioned above.

More precisely, suppose that G is a compact Lie group that fits in a short exact

sequence of compact Lie groups 1 → A
ι
→ G

π
→ Q → 1. Let X be a com-

pact G-space such that A acts trivially on X . In the first part of this article
we study G-equivariant complex vector bundles p : E → X . Since A acts triv-
ially on X the fibers of E can be seen as A-representations. By decomposing E
into A-isotypical pieces we obtain a splitting of E as an A-equivariant vector bun-
dle in the form

⊕
[τ ]∈Irr(A)Vτ ⊗ HomA(Vτ , E) ∼= E. Here Vτ denotes the trivial

A-vector bundle π1 : X × Vτ → X associated to an irreducible representation
τ : A → U(Vτ ) and Irr(A) denotes the set of isomorphism classes of complex irre-
ducible A-representations. This splitting is one of A-vector bundles and not one of
G-vector bundles since in general the bundles Vτ ⊗HomA(Vτ , E) do not possess the
structure of a G-vector bundle, (see example 2.6). A key technical observation of
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this work is that, up to isomorphism, the direct sum
⊕

[τ ]∈Irr(A) Vτ ⊗HomA(Vτ , E)

can be rearranged using the different orbits of the action of Q on Irr(A) as to obtain
a decomposition of E in terms of G-vector bundles. This way a splitting of E as
a G-equivariant vector bundle is obtained in Theorem 2.7. This result plays a key
role in this paper.

Given an irreducible representation ρ : A → U(Vρ) we can obtain in a natural

way a central extension of the form 1 → S
1 → Q̃ρ → Qρ → 1, where Qρ = Gρ/A

and Gρ = {g ∈ G | g · ρ ∼= ρ}, (see Sections 1 and 2 for definitions). It turns
out that each of the pieces in the splitting formula given in Theorem 2.7 can be
used to define a twisted form of an equivariant K-theory, and as a consequence the
following result in this article is obtained:

Corollary 2.8. Let G be a compact Lie group, X a G space on which the normal
subgroup A acts trivially. Then there is a natural isomorphism

K∗
G(X) ∼=

⊕

ρ∈G\ Irr(A)

Q̃ρK∗
Qρ

(X)

where ρ runs over representatives of the orbits of the G-action on the set of isomor-
phism classes of irreducible A-representations and Qρ = Gρ/A.

In the above formula Q̃ρK∗
Qρ

(X) denotes a twisted form of Qρ-equivariant K-

theory. This result generalizes a similar decomposition obtained in [7] for the par-
ticular case of finite groups.

On the other hand, the decomposition obtained in Theorem 2.7 can be carried
out at the level of the universal G-equivariant complex bundle of rank n denoted by
γGU(n) → BGU(n). Here BGU(n) is the classifying space of G-equivariant rank n
complex vector bundles. Applying this decomposition to the restriction of γGU(n)
to BGU(n)A, we obtain a NA/A-equivariant homotopy equivalence with a product
of classifying spaces parametrized by the orbits of the action of the normalizer NA

on the set of non-trivial irreducible representations of A. This result is also one of
the main results of this article and is summarized in Theorem 3.3.

The second part of this article adds to the understanding of the geometric equi-
variant bordism groups of stably almost complex manifolds with boundary, when-
ever the isotropy groups of the interior of the manifold differ by one conjugacy class
of subgroups to the isotropies of the boundary. The equivariant version of the bor-
dism theories was developed by Conner and Floyd in their monumental work [4, 5]
and the unitary equivariant bordism theory was developed by Stong [17] among
others. A compact G-equivariant manifold is unitary if the tangent bundle may be
stabilized with trivial real bundles thus becoming isomorphic to a G-equivariant
complex vector bundle. The bordism group of unitary G-equivariant manifolds is
denoted ΩG

∗ and the product of manifolds makes ΩG
∗ into a ring and moreover a

Ω∗-module. The calculation of the Ω∗-module structure of ΩG
∗ has been evasive

and very little is known whenever G is not abelian. Whenever G is abelian it is
known that ΩG

∗ is zero in odd degrees and a free Ω∗-module in even degrees, (see
[13, §XXVIII, Thm. 5.3], [14, Thm. 1]), and the question remains open whether
this is also the case whenever G is not abelian.

The main calculational tool to understand ΩG
∗ is to restrict the attention to

unitary manifolds on which the isotropy groups at each point lie on a prescribed
family of subgroups of G. For a pair of families (F ,F ′) of subgroups of G with
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F ′ ⊂ F denote by ΩG
∗ {F ,F

′} the bordism classes of unitary G-manifolds with
boundary (M,∂M) such that the isotropy groups of the points in M lie on F
and the isotropy groups of the points of the boundary ∂M lie on F ′. Whenever
the families differ by the set of groups conjugate to a fix group A they are called
adjacent. Whenever A is normal in G and (F ,F ′) the pair of families is adjacent
differing by A, the bordism class of a manifold (M,∂M) in ΩG

∗ {F ,F
′} is equivalent

to the bordism class of the disk bundle of the tubular neighborhood of the fixed
point set MA in M . Therefore we may keep the information of the normal bundle
by a map fromMA to the classifying space of G-equivariant complex vector bundles
over trivial A-spaces. Hence the unitary G-equivariant bordism groups for adjacent
families can be written in terms of non-equivariant unitary bordism groups of a
product of certain classifying spaces. As a consequence of Theorem 2.7 the following
decomposition of G-equivariant bordisms is obtained. This theorem is the last main
result in this article and is a new result for compact Lie groups that are not abelian.

Theorem 4.6. Suppose that G is a compact Lie group and let A be a closed normal
subgroup of G. If (F ,F ′) is an adjacent pair of families of subgroups of G differing
by A, then

ΩG
n {F ,F

′}(X) ∼=
⊕

0≤2k≤n−dim(G/A)

Ω
G/A
n−2k{{1}}


XA ×

⊔

P∈P(k,A)

BG/AU(P )


 ,

where {1} is the family of subgroups of G/A which only contains the trivial group.

In the above theorem BG/AU(P ) denotes a product of classifying spaces for dif-
ferent twisted equivariant vector bundles, (see Section 4 for the precise definition).

In the last section we use the previous theorem to determine the Ω∗-module

structure of Ω
D2p

∗ , where D2p is the dihedral group of order 2p with p an odd

prime. We show that Ω
D2p

∗ is a free Ω∗-module in even degrees and zero in odd
degrees.

This paper is organized as follows: in Section 1 we review some preliminaries re-
lated to central extensions and twisted equivariant K-theory. In Section 2 we prove
Theorem 2.7 and obtain Corollary 2.8 as a consequence. In Section 3 we calculate
the homotopy type of the fixed points space BGU(n)A for a closed subgroup A of
G. Section 4 is dedicated to study geometric G-equivariant bordism and Theorem
4.6 is proved there. Finally, in Section 5 some applications are considered.

1. Preliminaries

1.1. Central extensions and representations. Suppose that we have an exact
sequence of compact Lie groups

1 → A
ι
→ G

π
→ Q→ 1

and let ρ : A → U(Vρ) be a complex, finite dimensional, irreducible representation
of A. Since A is normal in G, the group G acts on the left on the set Hom(A,U(Vρ))
of homomorphisms from A to U(Vρ) by the equation

(g · χ)(a) := χ(g−1ag)

for χ ∈ Hom(A,U(Vρ)) and a ∈ A. Also, the unitary group U(Vρ) acts on the right
on Hom(A,U(Vρ)) by conjugation by the equation

(χ ·M)(a) :=M−1χ(a)M
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for χ ∈ Hom(A,U(Vρ)) and M ∈ U(Vρ). Note further that this left G action on
Hom(A,U(Vρ)) commutes with the right U(Vρ) action.

In this section we are going to show that if the representation ρ is such that
g · ρ ∼= ρ for every g ∈ G, then we can associate to ρ a central extension of G by S1

and that this central extension can be thought as an obstruction for the existence
of an extension ρ̃ : G → U(Vρ) of ρ. For this notice that the projective unitary
group PU(Vρ) := U(Vρ)/Z(U(Vρ)) = U(Vρ)/S

1 can be identified with the inner
automorphisms of U(Vρ) via the map p(M) = AdM , where AdM (N) = MNM−1

for M ∈ U(Vρ).

Lemma 1.1. Suppose that for all g ∈ G the irreducible representation g · ρ is

isomorphic to ρ. Then there is a unique homomorphism f : G → PU(Vρ) making

the following diagram commutative

A

ρ

��

ι
// G

f

��

U(Vρ)
p

// PU(Vρ).

Proof. Suppose that g ∈ G. Note that the representation g ·ρ : A→ U(Vρ), defined
by (g · ρ)(a) = ρ(g−1ag) for a ∈ A and g ∈ G, also has Vρ for underlying vector
space. By Schur’s lemma we know that HomU(Vρ)(g · ρ, ρ)

∼= C, thus there is only

one inner automorphism f(g−1) ∈ Inn(U(Vρ)) of U(Vρ) such that g ·ρ = f(g−1)◦ρ.
Whenever g ∈ A, we have that g·ρ = Adρ(g)−1 ◦ρ and therefore we set f(g) = Adρ(g)
whenever g ∈ A.

For h, g ∈ G we know that (hg ·ρ) = h · (g ·ρ) thus implying that f((hg)−1)◦ρ =
h · (f(g−1) ◦ ρ) = f(g−1) ◦ f(h−1) ◦ ρ and therefore f((hg)−1) = f(g−1) ◦ f(h−1).
Hence f is a homomorphism and by definition it is unique. �

Suppose now that we have an irreducible representation ρ : A→ U(Vρ) such that
g · ρ ∼= ρ for every g ∈ G. Let f : G→ PU(Vρ) be the homomorphism constructed
in the previous lemma so that the following diagram commutes

A

ρ

��

ι
// G

f

��

U(Vρ)
p

// PU(Vρ).

Recall that the natural projection map

1 → S
1 → U(Vρ)

p
→ PU(Vρ) → 1

defines a central extension of PU(Vρ) by S1. Define the Lie group G̃ρ := f∗U(Vρ)
as the pullback of U(Vρ) under the homomorphism f so that we obtain a central
extension of Lie groups

1 → S
1 → G̃ρ

τρ
→ G→ 1.
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If we denote by f̃ : G̃ρ → U(Vρ) the induced homomorphism we obtain the following
commutative diagram in the category of Lie groups

S1

��

S1

��

A
ι̃

//

=

��

G̃ρ
f̃

//

��

U(Vρ)

��

A
ι

// G
f
// PU(Vρ).

(1.2)

In the above diagram the vertical sequences are S1-central extensions and the ho-

momorphism ι̃ : A → G̃ρ is the unique homomorphism such that ρ = f̃ ◦ ι̃. Since

A is normal in G and G̃ρ is a central extension of G, then we have that ι̃(A) is also

normal in G̃ρ. Therefore the quotient G̃ρ/ι̃(A) is a Lie group and we denote it by

Q̃ρ := G̃ρ/ι̃(A)

since it depends only on ρ, and it fits into the diagram

(1.3) S1

��

S1

��

A
ι̃

//

=

��

G̃ρ
π̃

//

��

Q̃ρ

��

A
ι

// G
π

// Q

where the horizontal sequences are exact, the vertical are S1-central extensions and
the square on the right hand side is a pullback square.

Proposition 1.4. Consider the short exact sequence 1 → A → G → Q → 1 of

compact Lie groups and ρ : A→ U(Vρ) an irreducible representation of A such that

its isomorphism class is invariant under the G action, namely that (g ·ρ) ∼= ρ for all

g ∈ G. Then the representation ρ may be extended to an irreducible representation

ρ̃ : G → U(Vρ) if and only if the S1-central extension Q̃ρ is trivial, i.e. Q̃ρ is

isomorphic to Q× S1 as Lie groups.

Proof. If Q̃ρ is trivial as a S1-central extension, then G̃ρ must also be trivial as a

S1-central extension, i.e. G̃ρ
∼= G × S1. Therefore there is a homomorphism σ :

G→ G̃ρ compatible with the quotient homomorphism G̃ρ → G whose composition

ρ̃ := f̃ ◦ σ : G→ U(Vρ) is the desired extension of ρ.
Conversely, if ρ̃ : G → U(Vρ) extends the homomorphism ρ then ρ̃ defines a

homomorphism σ : G→ G̃ρ compatible with the quotient homomorphism G̃ρ → G

thus making G̃ a trivial S1-central extension. It follows that Q̃ is also trivial as a
S
1-central extension. �

Remark 1.5. Recall that isomorphism classes of S1-central extensions ofQ are in 1-
1 correspondence with elements in H3(BQ,Z) (see [2, Prop. 6.3]). By the previous
proposition we may say that the obstruction for the existence of the extension ρ̃ :
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G→ U(Vρ) of the irreducible representation ρ : A→ U(Vρ) is the cohomology class

[Q̃ρ] ∈ H3(BQ,Z) which encodes the information of the S1-central extension S1 →

Q̃ρ → Q. In [7, §2] the obstruction of the existence of extensions of representations
ρ : A → U(Vρ) was studied for the case of finite groups and the obstruction was
explicitly described in terms of cocycles.

1.2. Twisted equivariant K-theory. Next we recall the definition of twisted
equivariant K-theory that we will use throughout this article. For this suppose
that Q is a compact Lie group and let

1 → S
1 → Q̃

τ
→ Q→ 1

be a S1-central extension of Q. Let X be a Q-space and endow it with the action

of Q̃ induced by the Q-action. Consider the set of isomorphism classes of Q̃-vector
bundles p : E → X on which the elements z ∈ S1 act by the scalar multiplication of

z−1, denote this set by Q̃VecQ(X). The set Q̃VecQ(X) is a semigroup under direct

sum of vector bundles and we define the twisted equivariant K-group Q̃K0
Q(X) as

the Grothendieck construction applied to Q̃VecQ(X). For n > 0 the twisted groups
Q̃Kn

Q(X) are defined as Q̃K̃0
Q(Σ

nX+). We call the groups Q̃K∗
Q(X) the Q̃-twistedQ-

equivariant K-theory groups of X . Notice that Q̃K∗
Q(X) is naturally a module over

R(Q). The twisted groups Q̃K0
Q(X) can alternatively be defined as follows. The

action of S1 onX obtained by restricting the Q̃-action is trivial. Therefore we obtain
a natural map K0

Q̃
(X) → K0

S1
(X) ∼= K0(X) ⊗ R(S1). Composing this with the

restriction map K0(X)⊗R(S1) → R(S1) we obtain a natural map K0
Q̃
(X) → R(S1)

and Q̃K0
Q(X) can also be defined as the inverse image of the subgroup generated

by the S1-representations on which a scalar z acts by multiplication of z−1. This

description can also be used to define Q̃Kn
Q(X). The cohomology class that classifies

the twist is the image of the class [Q̃] ∈ H3(BQ,Z), that corresponds to the central

extension Q̃, under the canonical map H3
Q(∗,Z) = H3(BQ,Z) → H3

Q(X,Z).

Remark 1.6. In the literature it is more common to encounter a different (but
equivalent) definition of this twisted form of equivariant K-theory, cf. [1, Def. 7.1].

Suppose that we are given a central extension 1 → S1 → Q̃
τ
→ Q → 1. We can

also consider the set Q̃+

VecQ(X) of isomorphism classes of Q̃-vector bundles over
p : E → X on which an element z ∈ S1 acts by the scalar multiplication of z.

The set Q̃+

VecQ(X) is also a semigroup under direct sum of vector bundles and

we can also define a twisted form of K-theory, which we will denote by Q̃+

K0
Q(X),

as the Grothendieck construction applied to Q̃+

VecQ(X). For n > 0 the twisted

groups Q̃+

Kn
Q(X) can be defined in a similar way as above. These two twisted forms

of equivariant K-theory are naturally isomorphic as we show next. By definition

it suffices to prove the case n = 0. Let p : E → X be a Q̃-vector bundle such
that a central element z ∈ S1 acts by the scalar multiplication of z−1 so that

[E] ∈ Q̃VecQ(X). Let Hom(E,C) be the vector bundle dual to E, where C denotes

the trivial Q̃-vector bundle π1 : X × C → X . If φ ∈ Hom(E,C)x and q ∈ Q̃ the
action of q on φ is the element q ·φ ∈ Hom(E,C)qx defined by (q ·φ)(v) = φ(q−1 ·v)

for every v ∈ Eqx. With this action Hom(E,C) is a Q̃-vector bundle. If z ∈ S
1 is
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a central element and φ ∈ Hom(E,C)x, then as the action of z in E is given by
scalar multiplication of z−1, we have

(z · φ)(v) = φ(z−1 · v) = φ(zv) = zφ(v)

for every v ∈ Ex. This shows that Hom(E,C) is a Q̃-equivariant vector bundle on
which the central factor S1 acts by multiplication of scalars on the fibers so that

[Hom(E,C)] ∈ Q̃+

VecQ(X). The assignment

Q̃VecQ(X)
∼=→ Q̃+

VecQ(X)

[E] 7→ [Hom(E,C)]

is an isomorphism of semigroups. After applying the Grothendieck construction

we obtain an isomorphism Q̃K0
Q(X)

∼=
→ Q̃+

K0
Q(X). Throughout this article we

will work with the twisted form of equivariant K-theory constructed using vector
bundles on which the elements of the central factor S1 act by multiplication of their
inverse; these are the bundles that appear naturally in our work.

2. Equivariant K-theory with prescribed fibers

The goal of this section is to generalized the decomposition of G-equivariant
K-theory obtained in [7, Theorem 3.2] to the case of compact Lie groups.

To start assume that G is a compact Lie group and let A be a normal subgroup
of G so that we have an extension of compact Lie groups

1 → A
ι
→ G

π
→ Q→ 1,

whereQ = G/A. Let G act on a compact spaceX in such a way that A acts trivially
on X . Assume that p : E → X is a G-equivariant complex vector bundle. We can
give E a Hermitian metric that is invariant under the action of G, in particular
this metric is A-invariant. If we see p : E → X as an A-vector bundle then as the
action of A on X is trivial, by [16, Proposition 2.2] we have a natural isomorphism
of A-vector bundles

β :
⊕

[τ ]∈Irr(A)

Vτ ⊗ HomA(Vτ , E)
∼=
→ E

v ⊗ f 7→ f(v).

In the above equation Irr(A) denotes the set of isomorphism classes of complex irre-
ducible A-representations, and if τ : A→ U(Vτ ) is an irreducible A-representation,
then Vτ denotes the trivial A-vector bundle π1 : X×Vτ → X . The decomposition of
the vector bundle E provided above is a decomposition as an A-equivariant bundle
and not as a G-equivariant bundle. Furthermore, the summands Vτ⊗HomA(Vτ , E)
that appear in this decomposition do not have in general the structure of a G-vector
bundle in such a way that the map β is G-equivariant. Following [7] we have the
next definition.

Definition 2.1. Suppose that ρ : A → U(Vρ) is a complex irreducible represen-
tation and that 1 → A → G → Q → 1 is a short exact sequence of compact Lie
groups. A (G, ρ)-equivariant vector bundle over X is a G-vector bundle p : E → X
such that the map

β : Vρ ⊗HomA(Vρ, E) → E

v ⊗ f 7→ f(v)
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is an isomorphism of A-vector bundles.

A (G, ρ)-equivariant vector bundle is a G-equivariant vector bundle p : E → X
such that for every x ∈ X the A-representation Ex is isomorphic to a direct sum
of copies of the representation ρ. Notice that if p : E → X is a (G, ρ)-equivariant
vector bundle then for every g ∈ G we have g · ρ ∼= ρ so that (G, ρ)-equivariant
vector bundles can only exists when this happens. We can define a direct sum-
mand of the equivariant K-theory using (G, ρ)-equivariant vector bundles. For this
let VecG,ρ(X) denote the set of isomorphism classes of (G, ρ)-equivariant vector
bundles, where two (G, ρ)-equivariant vector bundles are isomorphic if they are iso-
morphic as G-vector bundles. Notice that if E1 and E2 are two (G, ρ)-equivariant
vector bundles then so is the direct sum E1 ⊕ E2. Therefore VecG,ρ(X) is a semi-
group.

Definition 2.2. Assume that G acts on a compact space X in such a way that A
acts trivially on X . We define K0

G,ρ(X), the (G, ρ)-equivariant K-theory of X , as

the Grothendieck construction applied to VecG,ρ(X). For n > 0 the groupKn
G,ρ(X)

is defined as K̃0
G,ρ(Σ

nX+), where as usual X+ denotes the space X with an added
base point.

Following [7] we relate the (G, ρ)-equivariant K-theory of X with a suitable
twisted form of equivariant K-theory as defined in §1.2. For this suppose that
ρ : A → U(Vρ) is an irreducible representation and let f : G → PU(Vρ) be the

homomorphism associated to ρ as constructed in Lemma 1.1. Consider G̃ρ =

f∗U(Vρ) and Q̃ρ := G̃ρ/ι̃(A) so that we have a commutative diagram of central
extensions as in diagram (1.3).

Theorem 2.3. Let X be a G-space such that A acts trivially on X. Assume that

g · ρ ∼= ρ for every g ∈ G. If p : E → X is a (G, ρ)-equivariant vector bundle, then

HomA(Vρ, E) has the structure of a Q̃ρ-vector bundle on which the elements of the

central factor S1 act by multiplication by their inverse. Moreover, the assignment

[E] 7→ [HomA(Vρ, E)]

defines a natural one to one correspondence between isomorphism classes of (G, ρ)-

equivariant vector bundles over X and isomorphism classes of Q̃ρ-equivariant vector

bundles over X for which the elements of the central S1 act by multiplication of their

inverse.

Proof. Suppose that p : E → X is a (G, ρ)-equivariant vector bundle. Then
HomA(Vρ, E) is a complex vector bundle over X . Next we give HomA(Vρ, E)

an action of G̃ρ on which ι̃(A) acts trivially.

Take φ ∈ HomA(Vρ, E)x and g̃ ∈ G̃ρ, and define g̃ • φ ∈ HomA(Vρ, E)g·x by

(g̃ • φ)(v) = gφ(f̃(g̃)−1v),

where g̃ projects to g in G and f̃ : G̃ρ → U(Vρ) is the homomorphism defined in
diagram (1.2). The action is a composition of continuous maps and therefore it is
continuous. It is straightforward to check that it is a homomorphism.

Now let us take a ∈ A and consider the action of ι̃(a) on φ. In this case we have

(ι̃(a) • φ)(v) = aφ(f̃(ι̃(a))−1v) = aφ(ρ(a)−1v) = φ(v)
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which implies that ι̃(a) • φ = φ. Hence the action of ι̃(A) on HomA(Vρ, E) is

trivial and therefore there is an induced action of Q̃ρ = G̃ρ/ι̃(A) on HomA(Vρ, E)
compatible with the action of Q on X .

Now, if λ ∈ ker(G̃ρ → G) the action becomes

(λ • φ)(v) = φ(f̃ (λ)−1v) = λ−1φ(v)

which implies that HomA(Vρ, E) is a Q̃ρ-equivariant bundle where the elements of
S1 act by multiplication by their inverse.

Now let us take a Q̃ρ-equivariant bundle F → X where the elements of S1 act
by multiplication by their inverse. Consider the vector bundle Vρ ⊗F and define a

G̃ρ action in the following way: for g̃ ∈ G̃ρ and v ⊗ e ∈ Vρ ⊗ F let the action be

g̃ · (v ⊗ e) :=
(
f̃(g̃)v

)
⊗ (π̃(g̃) · e)

where π̃ : G̃ρ → Q̃ρ is the homomorphism induced by π : G→ Q. This is clearly a

continuous G̃ρ action and for λ ∈ ker(G̃ρ → G) we have that

λ · (v ⊗ e) :=
(
f̃(λ)v

)
⊗ (π̃(λ) · e) = λv ⊗ λ · e = λv ⊗ λ−1e = v ⊗ e

which implies that the action factors through G = G̃ρ/S
1.

Let us see now how is the action once restricted to A. Take a ∈ A and consider
the element ι̃(a) ∈ G̃ρ. The action of a on v ⊗ e becomes

ι̃(a) · (v ⊗ e) =
(
f̃(ι̃(a))v

)
⊗ (π̃(ι̃(a)) · e) = ρ(a)v ⊗ e

which implies that the action of A on the fibers of Vρ ⊗ F is determined by the
representation ρ. Hence Vρ ⊗ F is a (G, ρ)-equivariant vector bundle.

If E is a (G, ρ)-equivariant vector bundle then Vρ⊗HomA(Vρ, E) is also a (G, ρ)-
equivariant vector bundle and the canonical map

Vρ ⊗HomA(Vρ, E) → E

v ⊗ φ 7→ φ(v)

is by definition an isomorphism of vector bundles. Note that the map is moreover

G-equivariant; for g̃ ∈ G̃ρ which projects to g ∈ G we have that

g · (v ⊗ φ) = g̃ · (v ⊗ φ) =
(
f̃(g̃)v

)
⊗ (g̃ • φ) ,

whose evaluation becomes

(g̃ • φ)
(
f̃(g̃)v

)
= gφ

(
f̃(g̃)−1f̃(g̃)v

)
= gφ(v),

thus implying that the canonical evaluation map is a G-equivariant isomorphism.

Finally, if F is a Q̃ρ-equivariant bundle where the elements of S1 act by mul-
tiplication by their inverse, we may consider the canonical isomorphism of vector
bundles

F → HomA(Vρ,Vρ ⊗ F )

e 7→ φe : v 7→ v ⊗ e.

It is straightforward to check that it is moreover an isomorphism of Q̃ρ-equivariant
vector bundles.
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We conclude that the inverse map of the assignment [E] 7→ [HomA(Vρ, E)] is
precisely the map defined by the assignment [F ] 7→ [Vρ ⊗F ]. The theorem follows.

�

Theorem 2.3 provides the following identification of the (G, ρ)-equivariant K-

groups of Definition 2.1 with the twisted groups Q̃ρK∗
Q(X) defined in Subsection

1.2.

Corollary 2.4. Let G be a compact Lie group and X be a compact G-space such

that the normal subgroup A of G acts trivially on X. Assume furthermore that

ρ : A→ U(Vρ) is an irreducible representation whose isomorphism class is fixed by

G, i.e. g · ρ ∼= ρ for every g ∈ G. Then the homomorphism

K∗
G,ρ(X)

∼=
→ Q̃ρK∗

Q(X)

[E] 7→ [HomA(Vρ, E)]

is a natural isomorphism of R(Q)-modules. The inverse map is F 7→ Vρ ⊗ F .

Whenever the isomorphism class of the A-representation ρ is not fixed by the
whole group G we need to be more careful. Define

Gρ := {g ∈ G|g · ρ ∼= ρ} and Qρ := Gρ/A

and call G̃ρ and Q̃ρ the S1-central extensions which measure the obstruction for
the extension of ρ to Gρ constructed in Proposition 1.4.

Now consider a G-vector bundle E over the compact G-space X on which A acts
trivially. We know that as a A-vector bundle we have the isomorphism

(2.5)
⊕

ρ∈Irr(A)

Vρ ⊗HomA(Vρ, E)
∼=
→ E

given by the evaluation, where ρ runs over the set of isomorphism classes of ir-
reducible A-representations. Each of the vector bundles Vρ ⊗ HomA(Vρ, E) is a
Gρ-vector bundle. However, it is not possible in general to provide each factor
Vρ ⊗ HomA(Vρ, E) with the structure of a G-vector bundle in such a way that
the isomorphism (2.5) is an isomorphism of G-equivariant vector bundles as the
G-action intertwines the vector bundles associated to irreducible A-representations
which are related by the action of G. To illustrate this issue we explore the following
example.

Example 2.6. Suppose that G = D8 is the dihedral group generated by the
elements a, b with relations a4 = b2 = 1 and bab = a−1 and let A = 〈a〉 = Z/4 so
that we have a short exact sequence

1 → A
ι
→ G

π
→ Q→ 1

with Q = G/A = {1, τ} = Z/2, where τ = [b] ∈ Q. Let ρ : A → S1 be the

representation given by ρ(a) = e
2πi
4 = i. In this example we have Irr(Z/4) =

{1, ρ, ρ2, ρ3} and the action of Q on Irr(Z/4) is such that τ permutes the isomor-
phism classes of the representations ρ and ρ3. Denote by Vρ := C equipped with the
A-representation ρ and Vρ3 := C equipped with the A-representation ρ3. Consider
the balanced product E := D8 ×A Vρ seen as a D8-equivariant vector bundle over
D8/A = {∗, ∗′}. Note that as a D8-equivariant vector bundle E is isomorphic to
the bundle Vρ ⊔ Vρ3 where the action of b maps Vρ to Vρ3 and vice versa using the
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explicit isomorphisms with C. Here we see Vρ as a bundle over {∗} and Vρ3 as a
bundle over {∗′}. In this case we have

Vρ ⊗HomA(Vρ, E) ∼= Vρ ⊔ {∗′},

Vρ3 ⊗HomA(Vρ3 , E) ∼= {∗} ⊔ Vρ3 .

Hence

Vρ ⊗HomA(Vρ, E)⊕ Vρ3 ⊗HomA(Vρ3 , E) ∼= Vρ ⊔ {∗′} ⊕ {∗} ⊔ Vρ3
∼= E

as D8-equivariant vector bundles. However, the factors Vρ ⊗ HomA(Vρ, E) and
Vρ3 ⊗HomA(Vρ3 , E) do not possess a structure of a D8-vector bundle that is com-
patible with the above isomorphism.

Suppose now that p : E → X is a G-vector bundle over the compact G-space
X on which A acts trivially. As our next step we show that the factors in the
decomposition described in formula (2.5) can be arranged in a suitable way as to
obtain a decomposition of E as a G-vector bundle. Choosing representatives {gi}i
for each class in G/Gρ, we know that the image of the evaluation map

⊕

i

Vgi·ρ ⊗HomA(Vgi·ρ, E)→E

becomes aG-equivariant vector bundle. Notice thatG/Gρ is finite sinceGρ contains
the connected component of the identity of G and G is compact; this follows from
the fact that G is acting on the discrete set Irr(A). Now, in order to define the
bundle above on a coordinate free fashion, we need to promote the Gρ-equivariant
bundle Vρ ⊗ HomA(Vρ, E) over X to a G-equivariant bundle over the same space
X . This construction was denoted multiplicative induction in [3, §4] and here we
will recall its properties.

Let G be a compact Lie group and H a closed subgroup. The restriction functor
rGH from G-spaces to H-spaces which restricts the action to H has a left adjoint
which maps a H-space Y to the G-space G×H Y thus having a homeomorphism

map(G×H Y,X)G ∼= map(Y, rGHX)H

for any G-space X . This left adjoint is additive, but in general it is not multiplica-
tive. A right adjoint for the restriction functor rGH can be defined on an H-space Y
as the G-space of H-equivariant maps from G to Y

mG
H(Y ) := map(G, Y )H

where G is considered as an H-space via left multiplication. The G-action on
mG

H(Y ) is given by (g · f)(k) := f(kg). A map of H-spaces φ : Y1 → Y2 induces a
map of G-spaces mG

H(φ) : mG
H(Y1) → mG

H(Y2) by composition. In this case there is
a homeomorphism:

map(rGH(X), Y )H ∼= map(X,mG
H(Y ))G

for any G-space X and any H-space Y . The maps are defined by:

map(X,mG
H(Y ))G → map(rGH(X), Y )H , F 7→ (x 7→ F (x)(1G))

map(rGH(X), Y )H → map(X,mG
H(Y ))G, f 7→ mG

H(f) ◦ pGH ,

where pGH : X → mG
H(rGH(X)) is defined by the equation

(pGH(x))(g) = gx
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and is the unit of the adjunction.
The functor mG

H is called multiplicative because

mG
H(Y1 × Y2) ∼= mG

H(Y1)×mG
H(Y2)

for any H-spaces Y1 and Y2.
Note also that the space mG

H(Y ) is homeomorphic to the space Γ(G×H Y,G/H)
of sections of the projection map G ×H Y → G/H , endowed with the G-action
given by (g · σ)(kH) = gσ(g−1kH) where σ is any section. In the case that G/H is
finite the space mG

H(Y ) is homeomorphic to the product of |G : H | copies of Y .

Let us now consider the G-equivariant bundle

mG
Gρ

(Vρ ⊗HomA(Vρ, E)) → mG
Gρ

(X)

and construct the pullback bundle

(pGGρ
)∗
(
mG

Gρ
(Vρ ⊗HomA(Vρ, E))

)
→ X.

The G-equivariant bundle (pGGρ
)∗
(
mG

Gρ
(Vρ ⊗HomA(Vρ, E))

)
is endowed with a

natural G-equivariant map to E, defined by the restriction of the natural map

map(G,Vρ ⊗HomA(Vρ, E))Gρ → E; φ 7→ ev(φ(1G))

induced by the evaluation map ev : Vρ ⊗ HomA(Vρ, E) → E, ev(v ⊗ f) = f(v).
Therefore we have constructed the desired G-vector bundle over X .

Theorem 2.7. Let G be a compact Lie group and E a G-equivariant complex vector

bundle over the compact G-space X. If the action on X by the normal subgroup

A of G is trivial, then the following decomposition formula is an isomorphism of

G-equivariant bundles
⊕

ρ∈G\ Irr(A)

(pGGρ
)∗
(
mG

Gρ
(Vρ ⊗HomA(Vρ, E))

)
∼=
→ E

where ρ runs over representatives of the orbits of the G-action on the set of iso-

morphism classes of irreducible A-representations.

Note that when the Lie group G is connected then Gρ = G for all ρ and the
decomposition simplifies to the isomorphism

⊕

ρ∈Irr(A)

Vρ ⊗HomA(Vρ, E)
∼=→ E

of G-equivariant bundles. This is also the case for example when G is abelian.
The decomposition formula of the equivariant vector bundle E induces an iso-

morphism in K-theory as follows:

Corollary 2.8. Let G be a compact Lie group, X a G space on which the normal

subgroup A acts trivially. Then there is a natural isomorphism

K∗
G(X) ∼=

⊕

ρ∈G\ Irr(A)

Q̃ρK∗
Qρ

(X)

where ρ runs over representatives of the orbits of the G-action on the set of iso-

morphism classes of irreducible A-representations and Qρ = Gρ/A.
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Proof. The isomorphism follows from the isomorphism
⊕

ρ∈G\ Irr(A)

K∗
Gρ,ρ(X)

∼=
→ K∗

G(X)

⊕

ρ∈G\ Irr(A)

Eρ 7→
⊕

ρ∈G\ Irr(A)

(pGGρ
)∗(mG

Gρ
Eρ)

and Corollary 2.4. �

3. The decomposition at the level of classifying spaces

In this section we will write the results of the previous section at the level of the
classifying space of G-equivariant complex vector bundles. This will show us how
the spectrum of G-equivariant K-theory decomposes at the fixed point set of each
subgroup.

The universal bundles for twisted equivariant K-theory associated to central
extensions of the group G are constructed as follows. Consider a central extension

1 → S
1 → G̃→ G→ 1

of the compact Lie groupG by S1. Let C̃∞ denote the direct sum of countable many

copies of all irreducible G̃-representations on which elements in S1 = ker(G̃ → G)

act by scalar multiplication of their inverse. Let G̃BGU(n) denote the Grassmannian

of n-dimensional complex subspaces of C̃∞ and denote by G̃γGU(n) the universal

n-plane bundle over G̃BGU(n). The complex vector bundle

C
n → G̃γGU(n) → G̃BGU(n)(3.1)

is the universal G̃-twisted G-equivariant complex vector bundle of rank n, and
therefore for a finite G-CW complex X we have

G̃VecnG(X) ∼= [X, G̃BGU(n)]G.

Note that since S1 acts by multiplication of the inverse of scalars, its action on

the Grassmannian of complex n-planes is trivial, and therefore the G̃-action on
G̃BGU(n) reduces to a G-action. If V ⊂ C̃∞ is a finite dimensional complex G̃-
subrepresentation, then there is a map

G̃γGU(n)⊕ V → G̃γGU(n+ |V |)

which induces a map ιV : G̃BGU(n) → G̃BGU(n+ |V |) at the level of the classifying
spaces. The colimit

G̃BGU := colim
−−−→
V⊂C̃∞

⊔

n≥0

G̃BGU(n)(3.2)

is the classifying space for reduced G̃-twisted G-equivariant complex K-theory

G̃K̃0
G(X) ∼= [X, G̃BGU ]G

for X a finite G-CW complex.

Whenever the extension is trivial G̃ ∼= S1 × G, the spaces S
1×GBGU(n) classify

G-equivariant U(n)-principal bundles, and therefore we may denote BGU(n) :=
S
1×GBGU(n) and BGU := S

1×GBGU , thus having that for X a compact G space

K̃0
G(X) ∼= [X,BGU ]G.
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Furthermore, the vector bundles γGU(n) := S
1×GγGU(n) are the universal G-

equivariant complex vector bundles of rank n.
Suppose now that A is a closed subgroup of the compact Lie group G. Consider

the fixed point set BGU(n)A and the restriction γGU(n)|BGU(n)A of the universal
vector bundle. Denote by NA the normalizer of A in G and by WA = NA/A the
quotient. Therefore γGU(n)|BGU(n)A → BGU(n)A is a NA-equivariant vector bun-
dle such that A acts trivially on the base space. In this way we are in the situation
of the previous section for the short exact sequence 1 → A → NA → WA → 1.
Take ρ ∈ Irr(A). By Theorem 2.3 the bundle HomA(Vρ, γGU(n)|BGU(n)A) is a

(W̃A)ρ-twisted (WA)ρ-equivariant complex bundle, but since the space BGU(n)A

is not necessarily connected, it may not have constant rank. Therefore in order to
construct a universal NA-equivariant complex bundle over spaces with trivial A-

actions using universal (W̃A)ρ-twisted (WA)ρ-equivariant complex bundles we need
to work with bundles of all ranks. We claim the following result:

Theorem 3.3. There is a WA-equivariant homotopy equivalence

∞⊔

n=0

BGU(n)A ≃
∏

ρ∈WA\ Irr(A)

mWA

(WA)ρ




∞⊔

nρ=0

(W̃A)ρB(WA)ρU(nρ)


 .

The stable version is

BGU
A ≃

∏

ρ∈WA\ Irr(A)

mWA

(WA)ρ

(
(W̃A)ρBU(WA)ρU

)

as WA-spaces.

Proof. To start notice that by [13, §V, Lem. 4.7 & §VII, Thm. 2.4] it follows
that BGU(n)A classifies NA-equivariant complex vector bundles of rank n over
A-trivial NA-spaces. Therefore

⊔∞
n=0BGU(n)A classifies NA-equivariant complex

bundles (of any rank) over spaces with trivial A-actions. The theorem will follow by
Theorem 2.7 since both sides classify NA-equivariant complex bundles over spaces
with trivial A-actions. Let us define the maps.

Since HomA(Vρ, γGU(n)|BGU(n)A) is a (W̃A)ρ-twisted (WA)ρ-equivariant com-
plex bundle there is a (WA)ρ-equivariant classifying map

fρ : BGU(n)A →
∞⊔

nρ=0

(W̃A)ρB(WA)ρU(nρ)

which induces a WA-equivariant map

mWA

(WA)ρ
(fρ) ◦ p

WA

(WA)ρ
: BGU(n)A → mWA

(WA)ρ




∞⊔

nρ=0

(W̃A)ρB(WA)ρU(nρ)


 .

This constructs the map from left to right.
For the map from the right to the left, we know from Theorem 2.3 that

∞⊔

nρ=0

Vρ ⊗
(W̃A)ργWA

U(nρ)
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is a (NA)ρ-equivariant complex bundle and

mNA

(NA)ρ




∞⊔

nρ=0

Vρ ⊗
(W̃A)ργWA

U(nρ)




is a NA-equivariant complex bundle. The product over ρ ∈ WA\ Irr(A) is also a
NA-equivariant complex bundle and therefore there is a classifying map

∏

ρ∈WA\ Irr(A)

mWA

(WA)ρ




∞⊔

nρ=0

(W̃A)ρB(WA)ρU(nρ)


→

∞⊔

n=0

BGU(n)A.

The homotopy equivalence follows from Theorem 2.7. The homotopy equivalence
of the stable version follows from Corollary 2.8.

�

Remark 3.4. Distributing the product over union we obtain a homeomorphism

∏

ρ∈WA\ Irr(A)

mWA

(WA)ρ




∞⊔

nρ=0

(W̃A)ρB(WA)ρU(nρ)




∼=

∞⊔

n=0

⊔
∑

nρ|ρ|=n

∏

ρ∈Irr(A)

(W̃A)ρB(WA)ρU(nρ)

where |ρ| denotes the complex dimension of the representation ρ. We note that the
expression on right hand side is not canonically a WA-space, therefore we induce
the WA-action on the right hand side from the one of the expression on the left.

Let P(n,A) be the set of arrays P = (nρ)ρ∈Irr(A) such that
∑

ρ∈Irr(A)

nρ|ρ| = n

Restricting to G equivariant complex bundles of rank n over G-spaces one gets the
WA-homotopy equivalence

BGU(n)A ≃
⊔

P∈P(n,A)

∏

ρ∈Irr(A)

(
(W̃A)ρB(WA)ρU(nρ)

)

where WA acts on P(n,A) permuting the arrays of numbers according to its action
on Irr(A), and the isotropy subgroups (WA)ρ act on the appropriate coordinate

space (W̃A)ρB(WA)ρU(nρ).
Whenever G is abelian G acts trivially on Irr(A) and therefore we recover the

homotopy equivalence of G/A-spaces

BGU(n)A ≃
⊔

P∈P(n,A)

∏

ρ∈Irr(A)

BG/AU(nρ)

that appeared in [13, §XXVI, Prop. 4.3]. Note that in this case
∑

ρ nρ = n since
all irreducible representations of A are 1-dimensional.

Whenever the normalizer of A is connected, the right hand side simplifies as

BGU(n)A ≃
⊔

P∈P(n,A)

∏

ρ∈Irr(A)

W̃AρBWA
U(nρ)

where W̃Aρ is the S
1-central extension of WA that depends on ρ.
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4. Equivariant unitary bordism

The decomposition of equivariant complex vector bundles on fixed point sets car-
ried out in the previous sections is a key ingredient in the calculation of equivariant
unitary bordisms for families. Conner and Floyd in their monumental work on the
study of the bordism groups [4, 5] introduced the use of families of subgroups in
order to restrict the bordisms to manifolds whose isotropy groups lie in a prescribed
family.

Here we will concentrate in the tangentially stably equivariant unitary bordism
groups ΩG

∗ , which will be called the geometric G-equivariant unitary bordisms. The
explicit definition of these homology groups and their stable versions can be found
in [8, §2] and in [13, §XXVI, Def. 3.1]. Let us recall the main ingredients. In all
what follows G will be a compact Lie group.

Definition 4.1. Let M be a smooth G-manifold. A tangentially stably almost
complex G-structure on M is a complex G-structure on TM ⊕ R

k for some k ≥ 0,
where R

k denotes the trivial bundle M × R
k over M with trivial G-action, i.e.

there exists a G-equivariant complex bundle ξ over M such that TM ⊕ R
k ∼= ξ

as G-equivariant real vector bundles. Two tangentially stably almost complex G-
structures are identified if after stabilization with further G-trivial C summands
the structures become G-homotopic through complex G-structures.

With this definition if H is a closed subgroup of G then the fixed pointsMH also
have a tangentially stably almost complex NH -structure. Moreover, a NH -tubular
neighborhood around MH in M possesses a NH -complex structure by [13, §XXVI,
Prop. 3.2], let us see why. The bundle TM |MH contains T (MH) as a subbundle
and

TM |MH = T (MH)⊕ ν(MH ,M)

where ν(MH ,M) is the normal bundle of MH in M . Also T (MH) = (TM |MH )H

is a NH -equivariant real vector bundle.
Given the tangentially stably almost complex G-structure ξ, we have that ξ|MH

is a complex vector bundle over MH with a complex vector subbundle ξH also

ξH ∼=
(
TM ⊕ R

k
)H

= (TM |MH )H ⊕ R
k = T (MH)⊕ R

k,

therefore MH has a tangentially stably almost complex NH-structure.
Now, since

ξ|MH
∼= TM |MH ⊕ R

k = T (MH)⊕ ν(MH ,M)⊕ R
k

then the normal bundle ν(MH ,M) is isomorphic to the quotient bundle ξ|MH /ξH ,
which is a NH-complex bundle on MH , thus showing that the normal bundle of
MH on M possesses a NH-complex structure.

Definition 4.2. For a cofibration of G-spaces Y → X the geometric G-equivariant
unitary bordism groups ΩG

n (X,Y ) are defined as G-bordism classes of singular tan-
gentially stably almost complex n-dimensional G-manifolds (Mn, ∂Mn) → (X,Y ).

When G is trivial , a tangentially stably almost complex structure is the same

as a normally stably almost complex structure and Ω
{1}
n (X,Y ) is the usual unitary

bordism of the pair (X,Y ).
One way to study the equivariant bordism groups is through the study of the

equivariant bordism groups of manifolds M whose isotropies lie in fixed family of
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subgroups of G. This way of studying equivariant bordism groups was developed
by Conner and Floyd [5, §5] and it is currently one of the most useful techniques
to calculate the equivariant bordism groups.

A family of subgroups F of G is a set (possibly empty) consisting of subgroups
of G which is closed under taking subgroups and under conjugation. Denote by
EF the classifying space for the family EF , a G-space which is terminal in the
category of F -numerable G-spaces [19, §1, Thm 6.6], and which is characterized by
the following properties on fixed point sets: EFH ≃ ∗ if H ∈ F and EFH = ∅ if
H /∈ F .

Given families of subgroups F ′ ⊂ F of G the induced map EF ′ → EF can be
constructed so that it is a G-cofibration.

Following tom Dieck ([18, p. 310]), we can define equivariant unitary bordism
groups for families ΩG

∗ [F ,F
′] as follows. Given a G-space ΩG

∗ [F ,F
′](X) is defined

as

ΩG
∗ [F ,F

′](X) := ΩG
∗ (X × EF , X × EF ′).

Alternatively, we may define the geometricG-equivariant unitary bordism groups
ΩG

n {F ,F
′}(X,A) in a geometric way as was done in [17, §2]. We recall the definition

of the absolute unitary bordism groups ΩG
n {F ,F

′}(X) for completeness.
A (F ,F ′)-free geometric unitary bordism element of X is an equivalence class

of a triple (M,∂M, f), where M is an n-dimensional G-manifold endowed with
tangentially stably almost complex G-structure which is moreover F -free, i.e. such
that all isotropy groups Gm = {g ∈ G | gm = m} for m ∈ M belong to F ,
∂M is F ′-free and f : M → X is a G-equivariant map. Two triples (M,∂M, f)
and (M ′, ∂M ′, f ′) are equivalent if there exists a G-manifold V that is F -free such
that ∂V = M ∪M ′ ∪ V +, and M ∩ V + = ∂M , M ′ ∩ V + = ∂M ′, M ∩M ′ = ∅,
V + ∩ (M ∪ M ′) = ∂V + and V + is F ′-free, together with a G-equivariant map
F : V → X that restricts to f on M and to f ′ on M ′ .

Definition 4.3. The set of equivalence classes of (F ,F ′)-free geometric unitary
bordism elements of X , consisting of classes (M,∂M, f) where the dimension of M
is n, and under the operation of disjoint union, forms an abelian group denoted by
ΩG

n {F ,F
′}(X). We refer to these groups as the geometric unitary bordisms of X

restricted to the pair of families F ′ ⊂ F . The equivalence class corresponding to
the triple (M,∂M, f) will be denoted by [M,∂M, f ].

Notice that if N is a stably almost complex closed manifold, we can define
[N ] · [M,∂M, f ] := [N ×M,N × ∂M, f ◦πM ] thus making ΩG

n {F ,F
′}(X) a module

over the unitary bordism ring Ω∗.
The covariant functor ΩG

∗ {F ,F
′} defines a G-equivariant homology theory [17,

Prop. 2.1]. A natural transformation µ : ΩG
n {F ,F

′}(X) → ΩG
n [F ,F

′](X) can
be defined as in [18, Satz 3] in the following way. Suppose that (M,∂M, f) is a
representative of an element in ΩG

n {F ,F
′}(X). Since the inclusion EF ′ ⊂ EF

is G-cofibration, ∂M is F ′-free and M is F -free, there is a G-equivariant map
k :M → EF such that k(∂M) ⊂ EF ′. The G-equivariant map

(f, k) :M → X × EF

m 7→ (f(m), k(m))

maps ∂M into X ×EF ′ and therefore (f, k) becomes an element in ΩG
n [F ,F

′](X).
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Proposition 4.4. The natural transformation

µ : ΩG
n {F ,F

′}(X) → ΩG
n [F ,F

′](X)

[M,∂M, f ] 7→ [(M,∂M, (f, k))]

is an isomorphism.

The proof of this proposition follows the same lines as the one done by tom Dieck
in [18, Satz 3] in the case of equivariant unoriented bordism. We will not reproduce
the proof here.

The long exact sequence of the pair (X × EF ′, X × EF) becomes

· · · −→ ΩG
n {F

′}(X) −→ ΩG
n {F}(X) −→ ΩG

n {F ,F
′}(X) −→ ΩG

n−1{F
′}(X) −→ · · ·

where ΩG
n {F}(X) = ΩG

n {F , ∅}(X) is the bordism group of F -free tangentially
stably almost complex closed manifold with an equivariant map to X . Note that
for finite G, when F = {e} then ΩG

n {{1}}(X) is the bordism group of tangentially
stably complex closed manifolds with a free G-action and an equivariant map to X
which can be identified with the usual unitary bordism group Ωn(EG×G X).

Similarly for three families of representations F1 ⊆ F2 ⊆ F3, we have the corre-
sponding long exact sequence of a triple

→ ΩG
n {F2,F1}(X) → ΩG

n {F3,F1}(X) → ΩG
n {F3,F2}(X) → ΩG

n−1{F2,F1}(X) →

Following the same argument as in [5, Lemma 5.2] we can obtain the next lemma.

Lemma 4.5. Let (Mn, ∂Mn, f) be a (F ,F ′)-free geometric unitary bordism ele-

ment of X and Wn a compact manifold with boundary regularly embedded in the

interior of Mn and invariant under the G-action. If Gm ∈ F ′ for all m ∈Mn\Wn,

then [Mn, ∂Mn, f ] = [Wn, ∂Wn, f |Wn ] in ΩG
n {F ,F

′}(X).

A pair of families F ′ ⊂ F of subgroups of G is said to be an adjacent pair of

families of groups if F\F ′ = (A), where A is a subgroup of G and (A) is the set of
subgroups conjugate to A in G. We then say that F and F ′ differ by A. Notice
that if A is a normal subgroup of G, then a pair of families F and F differ by A
precisely if F = F ′ ⊔ {A}. Moreover, in this case if M is a G-manifold such that
Gm ∈ F for every m ∈M then the fixed point set MA has a free action of G/A.

Building on the notation of Theorem 3.3 and Remark 3.4 we denote by P(n,A)
the set of arrays P = (nρ)ρ∈Irr(A),ρ6=1 of non-negative integers, where the number
n1 associated to the trivial representation is not considered, such that

∑

ρ∈Irr(A),ρ6=1

nρ|ρ| = n.

In the above equation nρ is a non-negative integer and |ρ| denotes the complex
dimension of the representation ρ. Suppose now that A is a closed and normal
subgroup of G. For any such partition P we define the space

BG/AU(P ) :=
∏

ρ∈Irr(A),ρ6=1

(G̃/A)ρB(G/A)ρU(nρ)

with the G/A-action induced by the homeomorphism shown in Remark 3.4.
As an application Theorem 3.3 we obtain the following decomposition formula

for the geometric G-equivariant unitary equivariant bordism groups. This decom-
position is well known for the case of a compact abelian Lie group but is new for



EQUIVARIANT COMPLEX BUNDLES AND UNITARY BORDISM 19

the case of non abelian groups. Since we follow the same line of argument as in the
abelian case we only sketch part of its proof.

Theorem 4.6. Suppose that G is a compact Lie group and let A be a closed normal

subgroup of G. If (F ,F ′) is an adjacent pair of families of subgroups of G differing

by A, then

ΩG
n {F ,F

′}(X) ∼=
⊕

0≤2k≤n−dim(G/A)

Ω
G/A
n−2k{{1}}


XA ×

⊔

P∈P(k,A)

BG/AU(P )


 ,

where {1} is the family of subgroups of G/A which only contains the trivial group.

Proof. We are going to define an isomorphism Φ between these groups. Sup-
pose that f : M → X is a (F ,F ′)-free geometric unitary bordism of X so that
[M,∂M, f ] ∈ ΩG

n {F ,F
′}(X). Let MA = MA

1 ∪ · · · ∪MA
l be a decomposition on

disjoint manifolds, where eachMA
j is an n1(j)-dimensional manifold which is more-

over connected. By the G-equivariant tubular neighborhood, we may find pairwise
disjoint tubular neighborhoods Uj of MA

j in M which are diffeomorphic to the

G-manifolds D(νj) through the diffeomorphisms φj : Uj

∼=
→ D(νj), where D(νj)

denotes the unit disk bundle of the G-equivariant normal bundle νj → MA
j of the

inclusion MA
j ⊂M for j = 1, . . . , l. By Lemma 4.5 we know that

[M,∂M, f ] =

l∑

j=1

[Uj, ∂Uj , f |Uj
] =

l∑

j=1

[D(νj), S(νj), f |Uj
◦ φ−1

j ]

in ΩG
n {F ,F

′}(X). The bundle νj → MA
j is a complex G-equivariant bundle with

the property that the trivial A-representation does not appear on the fibers. Let
rj = rankC(νj) so that n = nj

1 + 2rj for each j = 1, . . . , l with nj
1 the dimension of

MA
j . By Theorem 3.3 we know that the bundle νj is classified by a G/A-equivariant

map

κj :M
A
j →

⊔

P∈P(rj ,A)

BG/AU(P ).

Now set fj :M
A
j → XA to be the restriction of f to MA

j , define the product map

(fj , κj) :M
A
j → XA ×

⊔

P∈P(rj ,A)

BG/AU(P ).

Notice that 0 ≤ dim(G/A) ≤ nj
1 and thus the class [MA

j , ∅, (fj, κj)] defines an

element in Ω
G/A
n−2rj

{{1}}(XA ×
⊔

P∈P(rj ,A)BG/AU(P )) for j = 1, . . . , l. We define

Φ([M,∂M, f ]) :=

l∑

j=1

[MA
j , ∅, (fj, κj)].

We claim that map Φ is an isomorphism. To see that Φ is surjective, suppose that

[Y, ∅, ϕ : Y → XA×
⊔

P∈P(k,A)

BG/AU(P )] ∈ Ω
G/A
n−2k{{1}}(X

A×
⊔

P∈P(k,A)

BG/AU(P )).

Let p : E → Y be the G-equivariant complex vector bundle defined by the map
π2◦ϕ : Y →

⊔
P∈P(k,A)BG/AU(P ) as it is shown in Theorem 3.3. Since Y is a closed

manifold with a free G/A-action and with a tangentially stably almost complex
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G/A-structure, then the closed unit disk of the bundle D(E) is an n-dimensional
manifold endowed with a tangentially stably complex G-structure. Moreover, the
boundary S(E) ofD(E) is F ′-free since the trivial A-representation does not appear
on the fibers of E. Denoting by ψ : D(E) → X the composition of the maps

D(E) → Y → XA →֒ X,

where the first is the projection on the base, the second is π1 ◦ ϕ and the third is
the inclusion, we see that the bordism class [D(E), S(E), ψ : D(E) → X ] lives in
ΩG

n {F ,F
′}(X) and by construction

Φ([D(E), S(E), ψ : D(E) → X ]) = [Y, ∅, ϕ].

This proves the surjectivity of Φ. The injectivity of Φ can be proved in a similar
way as in the case of a compact abelian Lie group using Theorem 3.3. �

To be able to extend the previous theorem to general subgroups that are not
necessarily normal, we consider G = NA and extend NA-bordisms to G-bordisms
with the change of groups formula [13, §XXVI, Lem. 3.4]: For any subgroup H of
a finite group G, we have an isomorphism

ΩH
∗ (X)

∼=
→ ΩG

∗ (G×H X)

[M,∂M, f :M → X ] 7→ [G×H M,∂(G×H M), G×H f : G×H M → G×H X ].

Corollary 4.7. If (F ,F ′) is an adjacent pair of families of subgroups of the finite

group G differing by the subgroup A, then

ΩG
n {F ,F

′}(X) ∼=
⊕

0≤2k≤n

ΩWA

n−2k{{1}}(X
A ×

⊔

P∈P(k,A)

BWA
U(P ))

where {1} is the family of subgroups of WA which only contains the trivial group.

Proof. We just need to note that MA∩MgAg−1

= ∅ whenever g does not belong to
NA. Therefore we can choose a NA-equivariant tubular neighborhood U of MA in
M such that its G-orbit G · U is a G-equivariant tubular neighborhood of G ·MA

and such that

G×NA
U → G · U, [(g, u)] 7→ gu

is a G-equivariant diffeomorphism. Hence we have an isomorphism

ΩG
∗ {F ,F

′}(X) ∼= ΩNA
∗ {F|NA

,F ′|NA
}(X)

[M,∂M, f ;M → X ] 7→ [U, ∂U, f |U : U → X ]

which composed with the isomorphism of Theorem 4.6 for the group NA and its
normal subgroup A provides the desired result. �

Let us use the decomposition formula given in Corollary 4.7 of the equivariant
bordism groups for adjacent families in the case of finite groups to give an alternative
proof of Theorem 1.1 in [15]. Let (F ,F ′) be an adjacent pair of families of subgroups
of the finite group G differing by the subgroup A, and consider the restriction map
from the G-bordisms to A-bordisms. Let A denote the family of all subgroups of A
and let P denote the family of all subgroups of A besides A itself. The restriction
of G-manifolds to A-manifolds gives a homomorphism

rGA : ΩG
n {F ,F

′} → ΩA
n {A,P}WA
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which lies in the WA-invariants since the action of the inner automorphisms of G
in ΩG

n {F ,F
′} is trivial (see [4, §20]) and the restriction map is NA-equivariant.

Applying the fixed point construction done in Theorem 4.6 to both sides of
the homomorphism above we obtain the following diagram with horizontal isomor-
phisms

ΩG
n {F ,F

′}
∼=

//

rGA

��

⊕
0≤2k≤n

ΩWA

n−2k{{1}}

(
⊔

P∈P(k,A)

BWA
U(P )

)

r
WA
{1}

��

ΩA
n {A,P}WA

∼=
//

⊕
0≤2k≤n

Ωn−2k

(
⊔

P
′
∈P(k,A)

BU(P
′
)

)WA

.

Note that BWA
U(P ) is a model for BU(P ) and therefore we may take BU(P ) :=

BWA
U(P ).

If we tensor with the ring ZP of P -local integers, where P is the collection of
primes which do not divide the order of the group, the right vertical map

ΩWA

n−2k{{1}}


 ⊔

P∈P(k,A)

BWA
U(P )


⊗ZP

∼= Ωn−2k


 ⊔

P∈P(k,A)

BWA
U(P )




WA

⊗ZP .

induces an isomorphism. Therefore the restriction map

rGA : ΩG
n {F ,F

′} ⊗ ZP → ΩA
n {A,P}WA ⊗ ZP

becomes an isomorphism (cf. [15, Prop. 3.1]). The spaces BWA
U(P ) are products

of BU(j)’s and therefore the bordism groups Ω∗(BWA
U(P )) are zero in odd degrees

and Ω∗-free in even degrees. Since

Ω∗(
(W̃A)ρB(WA)ρU(nρ))

is (WA)ρ-invariant, then the action of WA on
⊕

P∈P(k,A)

Ωn−2k(BWA
U(P ))

permutes the generators and therefore the WA invariants are also Ω∗-free. Hence
we conclude that the bordism groups ΩG

n {F ,F
′} ⊗ ZP for adjacent families are

Ω∗ ⊗ ZP -free in even degrees and zero in odd degrees. Therefore the short exact
sequences

0 → ΩG
∗ {F

′} ⊗ ZP → ΩG
∗ {F} ⊗ ZP → ΩG

∗ {F ,F
′} ⊗ ZP → 0

are all split for all pair of families of subgroups of G, ΩG
∗ ⊗ ZP is a Ω∗ ⊗ ZP -free

module and there is a canonical isomorphism

ΩG
∗ ⊗ ZP

∼=
⊕

(A)

ΩA
∗ {A,P}WA ⊗ ZP

where (A) runs over the set of conjugacy classes of subgroups of G (cf. [15, Thm.
1.1]).
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5. Applications

In this section we use Corollary 4.7 to calculate the Ω∗-module structure of the
equivariant unitary bordism groups of the dihedral groups of order 2p, where p is
an odd prime number.

Let D2p = 〈a, b|ap = b2 = 1, bab = a−1〉 denote the dihedral group of order 2p.
Notice that 〈a〉 ∼= Z/p is a normal subgroup of D2p and we have an extension of
groups

1 → Z/p
i
→ D2p

π
→ Z/2 → 1.

If we write Z/2 = {1, τ}, where τ2 = 1, then the map j(τ) = b defines a splitting
of the previous short exact sequence and thus D2p

∼= Z/p⋊ Z/2.
Let us recall what we know about the unitary bordism groups of freeD2p-actions.

Denote by S2i−1
− the sphere with the antipodal Z/2-action, and denote by S2k−1

λl

the spheres with the action of Z/p given by multiplying by λ = e
2πl
p . By [9, Cor.

2.5] the bordism classes of the D2p-free unitary manifolds defined by the balanced

products D2p ×Z/2 S
2i−1
− and D2p ×Z/p S

4k−1
λl with Z/2 ∼= 〈b〉 and Z/p ∼= 〈a〉 form a

generating set of Ω̃
D2p

∗ {{1}} as a Ω∗-module. In [9, Thm. 2.6] it is shown that the
map

i∗ ⊕ j∗ : (Ω̃
Z/p
∗ {{1}})Z/2 ⊕ Ω̃

Z/2
∗ {{1}}

∼=
→ Ω̃

D2p

∗ {{1}}(5.1)

induced by the balanced products is an isomorphism of Ω∗-modules, where

i∗

(
1

2

(
[S4k−1

λl ] + [S4k−1
λp−l ]

))
= [D2p×Z/pS

4k−1
λl ] and j∗[S

2i−1
− ] = [D2p×Z/2S

2i−1
− ].

Here Ω̃G
∗ {{1}} := Ω̃∗(BG) denotes the reduced bordism groups of BG, i.e. Ω̃∗(BG)

is the kernel of the augmentation map Ω∗(BG) → Ω∗.
Using [11, Theorem 3] we see that since Hn(BD2p;Z) = 0 for all n ≥ 1 odd,

then the projective dimension of Ω∗(BD2p) over Ω∗ is at most 1. Since Ω∗(BD2p)
contains torsion elements we conclude that it is not a Ω∗ projective module and
thus it has projective dimension 1 over Ω∗.

For what follows we will use the notation ΩG
+{F}(X) :=

⊕
n evenΩ

G
n {F}(X)

and ΩG
−{F}(X) :=

⊕
n oddΩ

G
n {F}(X) for any family F of subgroups of a finite

group G. Therefore ΩG
∗ {F}(X) = ΩG

+{F}(X)⊕ ΩG
−{F}(X). Similarly for pairs of

families. With this notation we have that Ω
D2p

+ {{1}} ∼= Ω+ and Ω
D2p

− {{1}} is all
torsion. Moreover, we can identify Ω∗ with Ω+ as Ω− = 0.

The following theorem was originally proved in [12] and we offer here a simpler
proof which makes use of the results of the previous sections.

Theorem 5.2. The unitary bordism group Ω
D2p

∗ is a free Ω∗-module on even di-

mensional generators.

Proof. Consider the families F0 ⊂ F1 ⊂ F2 ⊂ F3 of subgroups of D2p defined as
follows:

F0 :={{1}},

F1 :={{1}, 〈a〉},

F2 :={{1}, 〈a〉, 〈b〉, 〈aba−1〉 . . . , 〈ap−1ba1−p〉} = all \ {D2p},

F3 :=all.



EQUIVARIANT COMPLEX BUNDLES AND UNITARY BORDISM 23

The proof of the theorem will be based on the following facts that will be proved
later:

• The unitary bordism group Ω
D2p

∗ {F3,F1} is a free Ω∗-module on even
dimensional generators.

• The unitary bordism group Ω
D2p

+ {F1,F0} is a free Ω∗-module.

• The boundary map δ : Ω
D2p

+ {F3,F1} → Ω
D2p

− {F1,F0} is surjective.

• Both Ω
D2p

− {F0} and Ω
D2p

− {F1,F0} have projective dimension 1 as modules
over Ω∗.

• The boundary map ∂ : Ω
D2p

+ {F3,F0} → Ω
D2p

− {F0} is surjective.

Using these facts we can prove the theorem as follows. Since Ω
D2p

− {F3,F1} is
trivial, the long exact sequence associated to the families F0 ⊂ F1 ⊂ F3 becomes

0 → Ω
D2p

+ {F1,F0} → Ω
D2p

+ {F3,F0}
β
→ Ω

D2p

+ {F3,F1}
δ
→

Ω
D2p

− {F1,F0} →Ω
D2p

− {F3,F0} → 0.

Since δ : Ω
D2p

+ {F3,F1} → Ω
D2p

− {F1,F0} is surjective, the previous exact sequence
yields the short exact sequence

0 → Im(β) → Ω
D2p

+ {F3,F1}
δ
→ Ω

D2p

− {F1,F0} → 0.

We know that Ω
D2p

− {F1,F0} has projective dimension 1 as a module over Ω∗. Since

Ω
D2p

+ {F3,F1} is a free Ω∗-module, we conclude by Schanuel’s lemma,that Im(β)
must be a projective Ω∗-module and hence free by [6, Proposition 3.2]. On the
other hand, using the long exact sequence given above we obtain the short exact
sequence

0 → Ω
D2p

+ {F1,F0} → Ω
D2p

+ {F3,F0}
β
→ Im(β) → 0.

As both Ω
D2p

+ {F1,F0} and Im(β) are free modules over Ω∗ we conclude that

Ω
D2p

+ {F3,F0} is a free Ω∗-module as well. Moreover, since the boundary map

δ : Ω
D2p

+ {F3,F1} → Ω
D2p

− {F1,F0} is surjective, then Ω
D2p

− {F3,F0} is trivial. Hence

Ω
D2p
∗ {F3,F0} is a free Ω∗-module on even dimensional generators.
Now, the long exact sequence associated to the families F0 ⊂ F3 becomes

0 → Ω+ → Ω
D2p

+
γ
→ Ω

D2p

+ {F3,F0}
∂
→ Ω

D2p

− {F0} → Ω
D2p

− → 0

since Ω
D2p

+ {F0} ∼= Ω+ and Ω−{F3,F0} = 0. We know that the boundary map

∂ : Ω
D2p

+ {F3,F0} → Ω
D2p

− {F0} is surjective and thus we conclude that Ω
D2p

− is
zero. On the other hand, using the previous long exact sequence we obtain the
short exact sequence

0 → Im(γ) → Ω
D2p

+ {F3,F0}
∂
→ Ω

D2p

− {F0} → 0.

In this short exact sequence we know that Ω
D2p

− {F0} has projective dimension 1 as

a Ω∗-module and that Ω
D2p

+ {F3,F0} is a free Ω∗-module. By Schanuel’s lemma we
conclude that Im(γ) is a projective Ω∗-module and hence free by [6, Proposition
3.2]. Finally using the short exact sequence

0 → Ω+ → Ω
D2p

+
γ
→ Im(γ) → 0
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we conclude that Ω
D2p

+ is a free Ω∗-module because Ω+ and Im(γ) are free as well.
The theorem follows. �

Let us now check each one of the facts listed above.

Lemma 5.3. The unitary bordism group Ω
D2p

∗ {F3,F1} is a free Ω∗-module on even

dimensional generators.

Proof. Consider the adjacent pairs of families (F3,F2) and (F2,F1) with A = D2p

on the first case and A = 〈b〉 on the second. Since both D2p and 〈b〉 are their own
normalizers in D2p, then in both cases the groupWA is trivial. By Corollary 4.7 we

know that both Ω
D2p
∗ {F3,F2} and Ω

D2p
∗ {F2,F1} are isomorphic to unitary bordism

groups of copies of BU(k)’s and therefore free Ω∗-modules on even dimensional
generators. The long exact sequence associated to the families F1 ⊂ F2 ⊂ F3

implies that Ω
D2p

− {F3,F1} is trivial and the short exact sequence

0 → Ω
D2p

+ {F2,F1} → Ω
D2p

+ {F3,F1} → Ω
D2p

+ {F3,F2} → 0

implies that the middle term is also a free Ω∗-module. �

Lemma 5.4. The unitary bordism group Ω
D2p

+ {F1,F0} is a free Ω∗-module.

Proof. By Corollary 4.7 we know that

Ω
D2p
∗ {F1,F0} ∼= Ω

Z/2
∗ {{1}}


 ⊔

n1,n2,...,np−1∈N

BU(n1)× · · · ×BU(np−1)


 ,

where the number nl parametrizes the rank of the irreducible representation of Z/p

given by multiplication of e
2πl
p . The action of Z/2 interchanges the coordinates

BU(n1)× · · · ×BU(np−1) → BU(np−1)× · · · ×BU(n1)

(x1, ..., xp−1) 7→ (xp−1, ..., x1)

and it only has fixed points whenever nl = np−l for all 1 ≤ l ≤ p−1
2 . Therefore

Ω
D2p

∗ {F1,F0} ∼=M∗ ⊕N∗,

where M∗ is isomorphic to a direct sum of unitary bordism groups of copies of
BU(k)’s (thus a free Ω∗-module) and

N∗ :=
⊕

n1,n2,...,np−1
2

∈N

Ω∗

(
EZ/2×Z/2 X

2
)
,

whereX :=
∏l= p−1

2

l1
BU(nl) and Z/2 acts onX2 by permutation of the coordinates.

Next we study Ω∗(EZ/2 ×Z/2 X
2). The second page of the Atiyah-Hirzebruch

spectral sequence becomes

E2
s,t

∼= Hs(Z/2,Ωt(X
2))

and therefore E2
s,odd = 0 and E2

2k,t = 0 for k > 0. Whenever s = 0 we have that

the groups E2
0,∗ are the Z/2-coinvariants Ω∗(X

2)Z/2. By [10, Prop. 4.3.2 & 4.3.3]
we know that Ω∗(BU(k)) is a free Ω∗-module with basis

{αj1αj2 · · ·αjs |1 ≤ αj1 ≤ · · ·αjs , s ≤ k}

where the degree of αj1 · · ·αjs is 2(j1 + · · ·+ js), therefore it follows that the Z/2-
coinvariants Ω∗(X

2)Z/2 is a free Ω∗-module. Since the odd columns and the even
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rows are trivial, the vertical axis is a free Ω∗-module and the other components
of the first quadrant are Z/2-torsion, then the spectral sequence collapses on the
second page. This implies that Ω+(EZ/2×Z/2X

2) is isomorphic to the coinvariants

Ω∗(X
2)Z/2, and therefore Ω+(EZ/2 ×Z/2 X

2) is a free Ω∗-module. Hence N+ is a

free Ω∗-module, and therefore Ω
D2p

+ {F1,F0} is a free Ω∗-module. �

Lemma 5.5. The boundary map δ : Ω
D2p

+ {F3,F1} → Ω
D2p

− {F1,F0} is surjective.

Proof. Following the argument of the proof of the previous lemma it is enough

to show that there are elements in Ω
D2p

+ {F3,F1} whose boundary correspond in

Ω
D2p

− {F1,F0} to the generators of Ω−(EZ/2 ×Z/2 X
2) as Ω∗-module for X =

∏l= p−1

2

l1
BU(nl).

The bordism group Ω∗(X) is generated as Ω∗-module by unitary manifoldsM →
X (see [10, Prop. 4.3.2 & 4.3.3]) and therefore the trivial Z[Z/2]-submodule of
Ω∗(X

2) is generated as a Ω∗-module by the manifolds M2 → X2. We claim that
Ω−(EZ/2×Z/2 X

2) is generated as Ω∗-module by the unitary manifolds

S2i−1
− ×Z/2 M

2 → EZ/2×Z/2 X
2.

This follows from the following argument. Consider the maps

S2i−1
− ×Z/2 M

2 → EZ/2×Z/2 M
2 → EZ/2×Z/2 X

2

where the first one is induced by the inclusion S2i−1
− → S∞

− = EZ/2 and the second

is induced by the map M2 → X2. If the dimension of M is n, the composition of
the maps in homology

H2i+2n−1(S
2i−1
− ×Z/2M

2) → H2i+2n−1(EZ/2×Z/2M
2) → H2i+2n−1(EZ/2×Z/2X

2)

sends the volume form [S2i−1
− ×Z/2 M

2] to the Z/2-torsion class in the group

H2i+2n−1(EZ/2 ×Z/2 X
2) which corresponds in E2

2i−1,2n
∼= H2i−1(Z/2, H2n(X

2))

of the Serre spectral sequence to the class in H2i−1(Z/2,Z[M
2]) ∼= Z/2. Therefore

the homology classes in H−(EZ/2×Z/2X
2) defined by the volume forms of the uni-

tary manifolds S2i−1
− ×Z/2M

2 generate the homology in odd degrees. This implies

that the Thom homomorphism µ : Ω∗(EZ/2 ×Z/2 X
2) → H∗(EZ/2 ×Z/2 X

2) is
surjective and that the bordism spectral sequence collapses. We conclude that the
unitary manifolds S2i−1

− ×Z/2M
2 → EZ/2×Z/2X

2 generate Ω−(EZ/2×Z/2X
2) as

Ω∗-module.
Now consider the complex vector bundle E →M of rank n1+ · · ·+n(p−1)/2 that

the map M → X =
∏l= p−1

2

l1
BU(nl) defines, with the appropriate induced action of

Z/p = 〈a〉 on the fibers. Take the manifold S2i−1
− ×D(E×E), whereD(E×E) is the

disk bundle of E2 → M2 and define the D2p action on it as follows: for (x, y, z) ∈

S2i−1
− ×D(E ×E) let a · (x, y, z) := (x, ay, a−1z) and b · (x, y, z) := (−x, z, y). The

class of the D2p-manifold S2i−1
− ×D(E ×E) lies in Ω

D2p

− {F1,F0} and corresponds

to the class of S2i−1
− ×Z/2 M

2 → EZ/2 ×Z/2 X
2 in Ω∗(EZ/2 ×Z/2 X

2). The class

of the D2p-manifold D(Ci
−) × D(E × E) lies in Ω

D2p

+ {F3,F1} and its boundary

its the class of S2i−1
− ×D(E × E) in Ω

D2p

− {F1,F0}. Hence the the boundary map

Ω
D2p

+ {F3,F1} → Ω
D2p

− {F1,F0} is surjective and the lemma follows. �
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Lemma 5.6. As modules over Ω∗, both Ω
D2p

− {F0} and Ω
D2p

− {F1,F0} have projec-

tive dimension 1.

Proof. Notice that Ω
D2p
∗ {F0} = Ω∗(BD2p) and thus it has projective dimension

1 over Ω∗. On the other hand, using the previous lemma we conclude that the

Thom map corresponding to Ω
D2p

− {F1,F0} is surjective and thus [11, Proposition

4] implies that Ω
D2p

− {F1,F0} has projective dimension at most 1 as a module over
Ω∗. The projective dimension of this module is 1 because it also contains torsion
elements. �

Lemma 5.7. The boundary map ∂ : Ω
D2p

+ {F3,F0} → Ω
D2p

− {F0} is surjective.

Proof. By the isomorphism described in formula (5.1) we know that the bordism

classes [D2p ×Z/2 S
2i−1
− ] and [D2p ×Z/p S

4k−1
λl ] generate Ω

D2p

− {F0} as a Ω∗- module.

Let D(Ci
−) and D(C2k

λl ) denote the disks of the representations of Z/2 and Z/p

respectively whose boundary are S2i−1
− and S4k−1

λl . The manifolds D2p×Z/2D(Ci
−)

andD2p×Z/pD(C2k
λl ) are both (F3,F0)-free, and their boundaries areD2p×Z/2S

2i−1
−

and D2p×Z/pS
4k−1
λl respectively. Therefore the boundary map ∂ : Ω

D2p

+ {F3,F0} →

Ω
D2p

− {F0} is surjective and the lemma follows. �
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